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Abstract. We discuss a new class of toroidal boundary conditions for onedimensional 
quantum Hamiltonians with S. symmetry which are related to two-dimensional 71-state Pons 
models in the extreme anisotropic Hamiltonian limit. At their self-dual point (a point where 
a second-arder phase transition occurs for n=2,3,4) the duality transformation is shown 
to bean additional spmetrygiving rise to a new class of ‘duality twisted’ toroidal boundary 
conditions. The corresponding Hamiltonians are given in terms ofgenerators ofthe periodic 
Temperley-Lieb algebra with an odd number of generators. We discuss as an example the 
critical king model. Here the complete spectrum for the new boundary conditions can be 
obtained from a projection mechanism in the spin-1/2 XXZ Heisenberg chain. 

For a long time it has been known how to construct one-dimensional n-state quantum 
chains defined by a Hamiltonian H(A) from the transfer matrices of two-dimensional 
spin models defined on an Abelian group d of finite order n. T h i s  is achieved by 
taking an appropriate extreme anisotropic limit of the coupling constants in space and 
(euclidean) time direction [I ,  21 in such a way that the parameter A represents the 
inverse temperature of the corresponding two-dimensional model. H(A) is symmetric 
under a (discrete) symmetry group 9 of orderpan of H (containing d as a subgroup). 
9 depends on the choice of coupling constants to generalized magnetic fields which are 
other parameters of these models. Such models have been the object of extensive studies, 
well known examples include the Potts quantum chain corresponding the two-dimen- 
sional n-state Potts models [3]~symmetric under the symmetric group S, (see below), the 
n-state chiral Potts model 141 symmetric under the cyclic group Z,  or the Zamolodchikov 
Fateev quantum chain symmetric under the dihedral group 0, 151. Many of these 
models are self-dual in the sense that the spectrum of a finite chain with N sites verifies 
for judiciously chosen boundary conditions B, E’ the relation E:[A)~=LEg(l/A). 
(E$(?,) represents suitably chosen subsets Y of eigenvalues of H(A) acting on a chain 
of N sites with some boundary condition denoted by X.) 

It has been realized that for such Hamiltonians exist p different types of toroidal 
boundary~conditions, each type corresponding to one of the p different elements u ~ 9  
[6]. This means that the Hamiltonian H(A) commutes with a generalized translation 
operator Tu which has the form Tu= T .  UN where T is the translation operator for 
periodic boundary conditions and uN is an element of 9 acting on site N (the boundary 
in a chain of N sites) in a suitably chosen representation. Tu satisfies e= U where 
U= nj_, U, is the element in the symmetry group of H corresponding to the twist at 
the boundary defined by U. In this letter we consider the existence of such an operator 
T, as a definition for toroidal boundary conditions. By the introduction of symmetry- 
breaking magnetic fields the symmetry of the system will be reduced to a subgroup of 
B of orderp’<p and correspondingly the number of possible toroidal boundary condi- 
tions will decrease to p’. 
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Such systems have another interesting property if a second-order phase transition 
occurs for some temperature l /A:  Up to the non-universal bulk free energy the finite- 
size scaling spectrum is completely determined by conformal invariance [7] : We denote 
by EO the ground state energy of the model with periodic boundary conditions. Then 
in the thermodynamic limit N - m  the scaled energy gaps q=(N/2z)(E,-E0)= 
A + & + r + i  of the Hamiltonian with any kind of toroidal boundary conditions are 
given by the highest weights (A, A) of the irreducible highest weight representations of 
two commuting Virasoro algebras and some non-negative integers r, F. The quantities 
x = A + h  represent the anomalous dimensions of the fields describing the model at 
criticality, the quantities s= A-  h their spin. The multiplicities of the integer-spaced 
descendant levels with r, F#O are given by the character functions of the corresponding 
highest weight representations [SIT. 

It is the aim of this letter to show that the set of possible toroidal boundary con- 
ditions is not exhausted by those generated by the global symmetry 9 of self-dual 
Hamiltonians H(A). It turns out that at their self-dual point A = 1 the duality transforma- 
tion becomes a true symmetry of the models. As we will show in the n-state Potts 
models, this additional symmetry allows for a new type of toroidal boundary conditions 
and we will give explicit representations of H with these 'duality twisted' boundary 
conditions as well as the representations of the corresponding translation operators. 
Unlike the symmetry 9 which is broken by magneticfields, this symmetry vanishes by 
changing the temperature to A#1. In the example of the king model we present the 
complete finite-size scaling spectra for these new boundary conditions as obtained from 
a projection mechanism in the X X Z  Heisenberg chain [9, lo]. The spectra turn out to 
contain the anomalous dimension of so far unknown spinor operators. 

We study the one-dimensional n-state Potts quantum Hamiltonians acting on a 
chain with N sites 

H("I=-5-'[y I= I (e$!.i+hy)+By 1 . (1) 

Here 5-l is a normalization constant fking the euclidean time scale and A plays the role 
of the inverse temperature. The operators e?), 1 <Z<2N- 1 are given by 

1 "  
@,=- c (rY)Ik 

(2 )  
n h - 1  

.$I=- 1 "  , ( , , y )y (&y  
k = l  

where r)") and cy' are n x n matrices acting on site j which satisfy the relations (with 
U =exp(2zi/n)) 

(rp)"=(@)"=l 
n)  k t -  rWy-h crj' ) -( I 

(,,jn)"')*t=(Oy))"-k (3) 
(@))h(rY))/= uk'(r,P))/(up)h 

(,,?))k(p))/= (rj'"))'(,,p))h ( i # j ) .  

T In the case of certain non-toroidal boundary conditions the spectrum is given by the highest weights of the 
irreducible representations of only one Virasoro algebra. 
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BE) is an operator that specifies the boundary conditions (see below). Depending on 
the boundary conditions the Hamiltonian is symmetric under some subgroup of S,, and 
therefore splits into various sectors according to the irreducible representations of this 
group. For periodic boundary conditions the symmetry group is S,. 

Having dehed  the model we have  to^ discuss the boundary conditions and derive 
the duality transformation. In what follows, we will omit the superscript (n) in all the 
quantities defined above. Setting BN=e2N--I one obtains free boundary conditions. In 
this case the system is not translationally invariant, but it is important to note that the 
operators ej, 1 <j<2N- 1 satisfy the well known Temperley-Lieb algebra, originally 
introduced by Temperley and Lieb in order to establish relations between the spectra 
of the Potts quantum chain and the XXZ Heisenberg chain [3, 111. The Temperley- 
Lieb algebra with 2N- 1 generators is defined by the relations 

d = e j  

In order to construct the new type of boundary conditions announced above we 
first discuss the known toroidal boundary conditions arising from the symmetry group 
S, by following the procedure discussed in [12]. We define the operators gj, 
(1 Q'G2N- 1) and D by 

2N-I  

gjjx 

where X is defined by 

[g,,XI=O (1 G<2N-2) 
2 (g2N-1x)2=(Xg2N--I) 

( 5 )  

and the symbol n denotes the ordered product gig&. . . . The operators gj satisfy 
g,gj+gj+lgj=g,+igjgj+l (where 1 QG2N-2) andg,gk=gxgj if 1k-A 22. Together with (6) 
these are the defining relations for an affine Hecke algebra (see [I21 and references 
therein) and one finds Dej=e,+,D for 1 GjG2N-2. 

Now we focus on representations of this affine Hecke algebra in which D is invertible 
and define 

The set of operators ej ,  1 q G 2 N -  1 and e * ~  satisfies the relations ,of a periodic 
Temperley-Lieb algebra 1121 with 2N generators which is defined by relations (4) 
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together with 

e:N=e2N 

1 
n eZ?82N--le2N=- e 2 ~  

~ Z N ~ I ~ Z N = -  ~ Z N  
1 
n 

1 
n 

ele&, = - e l  

~ F Z N  = e ~ f i j  i f j#  1,2N- 1 

For n = 2 and n = 3 (Ising and 3-state Potts models respectively) some classes of solutions 
to (6) leading to different operators are discussed in [12]. For general n, the simplest 
solutions we found are of the form X'O=d!V where VES, is defined by 
V2=1, V C $ V = ~ - ~ ,  eV=ry-k.  Note that if a solution X commutes with some 
element UES., then also XU is a solution to (6). We call such solutions equivalent, 
since they do not lead to a different CZN.  

D acts on the operators e,, 1 e.<2N-1, and CZN as follows 1121: 

DejD-' = e,+' 

DezN- ID- ' = CZN 

D C ~ D - '  = e l .  

The known types of toroidal boundary conditions are obtained by setting 

BN=eZN-I+kgzN. (10) 

This can be seen as follows. By defining ?=D' one obtains ?ej?' =ej+* (1 GG2N-3) 
and similar relations involving cZN. In  the representation (2)-of ej this is the definition 
of the translation operator and one indeed obtains [H(L) ,  T]=O for all values of A. 
Furthermore we note that the Nth power of ?commutes with each of the operators e), 
cZN and therefore must be a linear combination of elements of the symmetry group of 
H. Thus we conclude that the boundary conditions (10) coincide with the toroidal 
boundary conditions generated by this group. We call the boundary conditions (10) 
'mixed sector' boundary conditions, since one can convince oneself that in the represen- 
tation (2) of the generators e, the boundary operator CZN contains a bilocal operator 
acting on sites Nand 1 and (non-local) operators U&. As a consequence the boundary 
conditions depend 2n the sector (for the king model as an example, see below). The 
various operators T obtained from the solutions of (6) are related to the translation 
operators Tu of the model with specific sector-independent boundary conditions (as 
defined in the introduction) in such a way that the projection of ?on some sector of 
H with boundary condition U coincides with the projection of Tu on this sector. 
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So far we have shown that D2 is related to the translation operator. It i:r easy to 
see that D is nothing but the duality transformation since from the definition of the 
Hamiltonian (1) and (IO) one finds 

DH(A)D-'=AH(:). (11) 

The operators are the dual operators to the operators e2j-l .  This leads us to an 
important observation: At the self-dual point A= 1 the duality transformation (1 1) 
becomes [H(l),D]=O, i.e., D becomes a symmetry, operator of the mixed sector 
Hamiltonian defined by (1) and (10). 

Now we are in a position to construct a Hamiltonian #with new toroidal boundary 
conditions arising from the additional duality symmetry at the self-dual point. Accord- 
ing to the general relationship between a specific toroidal boundary condition and 
the associated translation operator as discussed in the introduction we would like the 
translation operator commuting with the~Hamiltonian f? to perform a 1oca.l duality 
transformation at the boundary (such that pperforms a global duality transformation 
D).  Studying again a mixed boundary Hamiltonian instead of considering, specific 
sector- independent^ boundary conditions this means that we require p e j y l  =ej+2, 
1 QGN-4,  Teur-%?" =Z2N--L ., Feurd2f-' = e l  and @2N-lp1 =e,with some operator 

Repeating the discussion that led from (4) to (9) we realize that these are the 
relations satisfied by a periodic Temperley-Lieb algebra with 2N- 1 generators and an 
appropriately defined ?=B2. Thus we define a new operator b in analogy to the 
definition (5) by 

- 
- 
c2N- 1. 

with X now being a solution of 

Solutions to these equations are X'O =I$Vwhere Vis dehed as in the comment after 
(8). Using the analogy to (9) (one has to replace N by N- 1/2), we h d  that n i s  given 
by setting 

BN=&N- I (14) 
with 

(15) --I - 
g2N-1=De2Nv-2D . 

Obviously the (mixed sector) Hamiltonian f?=H(A= 1) defined by (1) with boundary 
term (14) commutes with the duality transformation d defined by (12). Defining the 
translation operator p by F=D2 one obtains p e , . r N = b e j d - ' ,  i.e., r" performs a 
duality transformation as required. As in the case of standard toroidal boundary condi- 
tions (9) discussed above the boundary condition B~defined by (14) contains non-local 
operators U& and therefore depends on the sector. Note that both the duality and 
translational invariance break down for A# 1. 

~ ~ 
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So far we considered mixed sector Hamiltonians. In order to obtain the duality 
transformation and the translation operator Tu for specific, sector-independent, bound- 
ary conditions one has to project on the sectors of the Hamiltonian and express T, in 
terms of the various translation operators Tor ?respectively, obtained from the solu- 
tions of (6) or (13) respectively.~The duality operator D(B) does not commute with 
H(& if the boundary conditions are sector-independent, but rather gives rise to rela- 
tions of the form DH:= HzD where H$denotes the projection of the Hamiltonian with 
boundary condition X on the sector Y. This gives rise to the duality relation given in 
the introduction for the energy levels. 

Let us summarize what we have so far. We first constructed representations of the 
periodic Temperley-Lieb algebra with 2N generators using the duality transformation 
D and showed that they ledto mixed sector versions of Hamiltonians H(A) with toroidal 
boundary conditions arising from their global symmetry. Then we realized that at the 
self-dual point A= 1 the duality transformation becomes an additional symmetry of 
H(l) and the toroidal boundary conditions corresponding to this symmetry were shown 
to be given by the representations of the periodic Temperley-Lieb algebra with 2N- 1 
generators. So, in a next step, we constructed these representations in a similar manner 
as before. This led again to a mixed sector Hamiltonian. 

Relating the problem of toroidal boundary conditions to representations of the 
periodic Temperley-Lieb algebra opens a way of constructing the new boundary opera- 
tors for sector-independent boundary conditions: One can look directly for represen- 
tations of the periodic Temperley-Lieb algebra with 2N- 1 generators by choosing the 
e, with 1 <j<2N-2 in the representation (2) and requiring Z*,V-~ to be a hermitian 
bilocal operator acting on sites Nand 1 and to satisfy the analogy to relations (8) with 
N replaced by N- 1/2. After somecalculation one finds the representations 

where A=co'u:-lr?uI with m=exp(Zzi/n) and l<l<n-l if n is odd and I =  
I, 1, . . . , ( n  - 1)/2, (n + 1)/2, . . . , n - 1, n - f if n is even respectively. This is an altema- 
tive presentation of the results obtained above avoiding the need to work with projection 
operators. We did not check whether there are other non-equivalent representations of 

To illustrate our results and to give an explicit application we consider the new 
boundary conditions in the king model. The king model is obtained by taking n = 2  in 
(1)-(5). First we illustrate our discussion in the case of the known, sector-independent. 
boundary conditions. In terms of Pauli matrices one has 

I 

6 . N -  1. 

Periodic boundary conditions we obtained by taking &=ezN-[ +A& with 
eig = I (  1 + uLui) and we denote the Hamiltonian with periodic boundary conditions 
by H'. The global symmetry is Sz, and Hn commutes with the spin flip operator 

N 

c=n: UT 
j -  I 

splitting H0 into two sectors which are even and odd under the action of C. We denote 
the corresponding projections on these two sectors by H: and HF , The S, symmetry 
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gives rise to one more kind of toroidal boundary conditions which we caU antiperiodic 
boundary conditions obtained by taking BN= e2N- 1 + with e:$ = f (1 - ~ ~ ~ 0 7 ) .  We 
denote the Hamiltonian with antiperiodic boundary conditions by H' and the projec- 
tions on the even and odd subspaces by Hd and H: respectively. Obviously H o  is 
translationally invariant and commutes with the translation operator 

N - I  

j =  I 
T P =  Pj.J.1 ' 

where Pj,j+] = i (1  +O;U;+I + c$c$+, + U;U;+I) permutes the spins at two neighbouring 
sites j and j + l .  On the other hand HI commutes with the generalized translation 
operator 

Ta=Tp .  O"N (20) 

satisfying (Ti)"=C. This illustrates the discussion in the introduction in the case,of 
sector-independent boundary conditions. Note that the operators e,, 1 e<2N- 1 and 
e$q or e 2  respectively verify the relations of the periodic Temperley-Lieb algebra with 
2N generarors. 

Now we consider the mixed sector Hamiltonian. There are two non-equivalent 
solutions to (6), A'(''= 1 and A'(''= &giving rise to two duality operators D''' and D"' 
aefined by ( 5 ) .  From them we obtain 

Thus taking BN=ezN-, + corresponds to periodic boundary conditions in the even 
sector and antiperiodic boundary conditions in the odd sector while the choice BN= 
eZN-] +ne&,) corresponds to periodic boundary conditions, in the odd sector and anti- 
periodic boundary conditions in the even sector. The mixed sector Hamiltonian H(*' 
with boundary conditions (21) commutes with the duality transformation D'O.". This 
gives rise to the well known duality relations for the projections on the subsectors 

with Q, Q = O ,  1 and addition in Q, Q defined modulo 2. 
= 4(  1 C) on the even and odd subsectors and using the 

relations satisfied by the g, and X one obtains after some calculation the translation 
operators 

Defining the projectors 

from which in turn T p  and TA can be obtained in terms of T"' and T'" if one is 
interested in the translation operators for sector-independent boundary conditions. 

After this brief review of the known boundary conditions we consider the new 
'duality twisted' boundary conditions. There are two non-equivalent solutions to (13), 
.@= 1 and XG'= 4 giving rise to two different duality operators 6'" and 6(') defined 
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by (12) and to two new boundary operators 
I+) - L  
~ N - L  - z (  1 - C~YNO?) 
4-1 -1 I+=& 
CZN-I - 2 (  N d )  

where $2- is the complex conjugate of & - I .  Note that a5 opposed to the generalized 
boundary conditions discussed in 1131 the Hamiltonian does not contain the operator 
U;. 

From the duality operators 6'Q' we obtain after some calculation the translation 
operators 

with dL=g2L-zgzL-l. In this expression both gZL+ and g2L-I are defined by (5) with 
the corresponding ejin the representation (17). The asterisk marks complex conjugation. 

The corresponding sector-independent boundary operators satisfying the relations 
of the periodic Temperley-Lieb algebra are given by 

(26) 

and its complex conjugate. The translation operator commuting with Rwith this bound- 
ary condition is obtained from (25) through projection on the even and odd sectors 
and given by 

(27) 

I 
&+-I = 5 (1 + &No:) 

T - -L( i"1'Z'  + @ O ' z  
D - 1  

and its complex conjugate. 
Finally we discuss the spectrum of i?. Since the king Hamiltonian with boundary 

condition BN=&-t (26) is hermitian, the spectrum with the complex conjugate 
boundary condition Bg is identical. In addition to the symmetries discussed above, R 
commutes with the operator 

where Pj,,. is the permutation operator defined above and [L] denotes the integer part 
of the number L. P does not commute with the spin flip operator C and therefore the 
two sectors of are degenerate. 

The finite-size scaling spectra for the two (degenerate) sectors can be obtained from 
the XXZ Heisenberg chain with an odd number of sites [IO]. As discussed in the 
introduction, the scaled energy gaps 8, in the thermodynamic limit are given by the 
irreducible highest weight representations (A, i) of the Virasoro algebra with central 
charge c = 1/2 describing the critical Ising model. Therefore we denote the scaled energy 
gaps 8 by the various representations (A, A) contributing to them and obtain for each 
sector [IO] 

8 = (073 + c?i, A). 

8= (A, 0) + (A, 3. 

(29) 

For the complex conjugate boundary conditions one obtains 

(30) 
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To the best of our knowledge operators with anomalous dimensions x=1/16 and 
x=9/16 and spin s=f1/16 and s=f7/16 respectively, have not been discussed in 
connection with the critical Ising model. 

To conclude let us note that the finite-size scaling spectra of the 3-states Potts model 
with boundary conditions given by (15) or (16) respectively, are also explicitly known 
from the projection mechanism in the XXZ Heisenberg chain [lo]. It would be very 
interesting to study the possibility of ‘duality  twisted^' boundary conditions in other 
critical systems. We have left open the question of completeness of the solutions to (13) 
and of the representations (16) respectively.~This problem is addressed in [12] for the 
periodic Temperley-Lieb algebra with an even number of generators and needs further 
investigation, in particular in the case of an odd number of generators. 
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